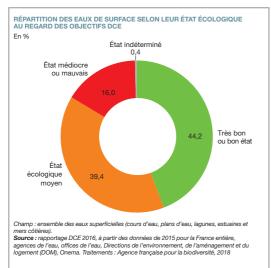
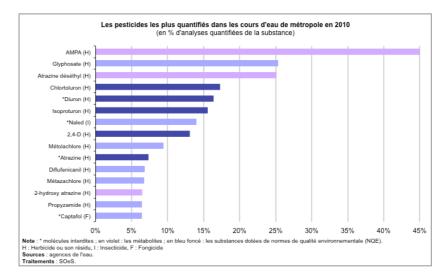


Unité Expérimentale Grandes Cultures Versailles-Grignon

En quoi les essais systèmes de culture permettentils de répondre aux enjeux de la réduction des produits phytosanitaires ?

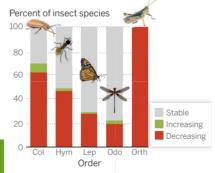

Muriel Valantin Morison – UMR Agronomie



Les enjeux de la réduction des produits phytosanitaires

Dégradation de l'environnement

• Dégradation de la qualité des milieux aquatiques et des sols, émission GES, réduction biodiversité, consommation de ressources rares (MEA)



• Erosion de la biodiversité

- 40, 50, 70% des insectes, des oiseaux (MEA, 2005, Newbod et al., 2015, Sanchez Bayo et al., 2019)
- 24% des français se disent inquiets de cette érosion

Les enjeux de la réduction des produits phytosanitaires

Durabilité des solutions génétiques et chimiques

- Résistances des organismes aux pesticides, érosion de l'efficacité des Substances Actives
- Durabilité des résistances variétales

Nouveaux enjeux

• Santé humaine : pesticides, qualité nutritionnelle

Nouveaux marchés

• Demande croissante en agriculture biologique

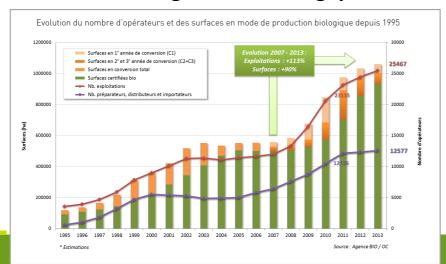
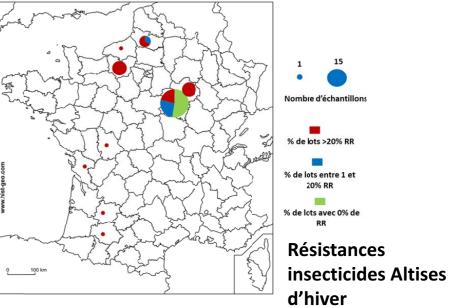
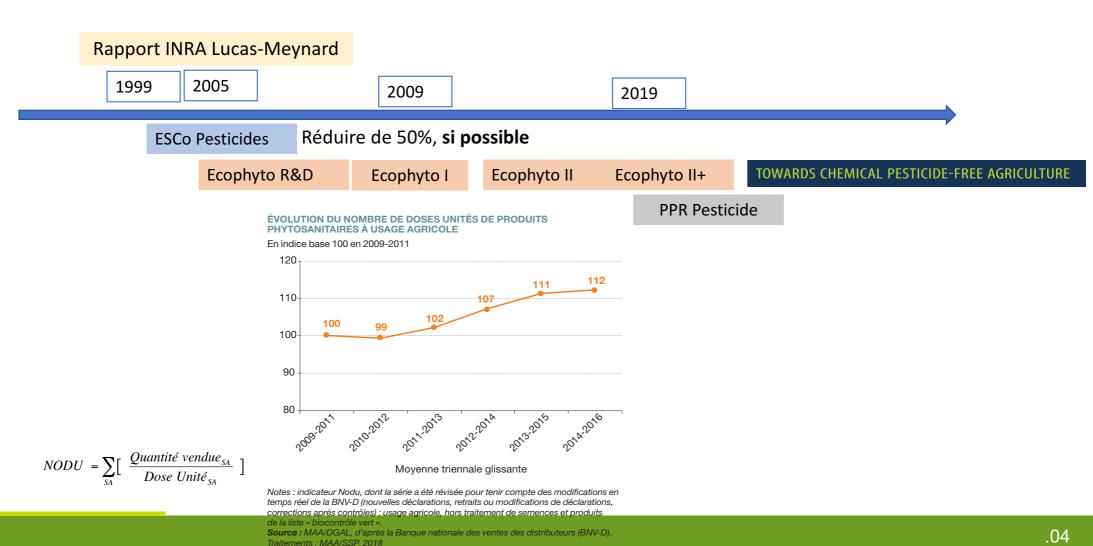




Figure 1 – Résultats des analyses kdr sur larves d'altises d'hiver faites en 2015 (analyses faites par le biais de l'IRAC). RR : individus homozygotes résistants.

Terre Inovia – 2015

On en parle depuis 20 ans... et pourtant...

En quoi les essais systèmes peuvent aider à répondre à ces enjeux ?

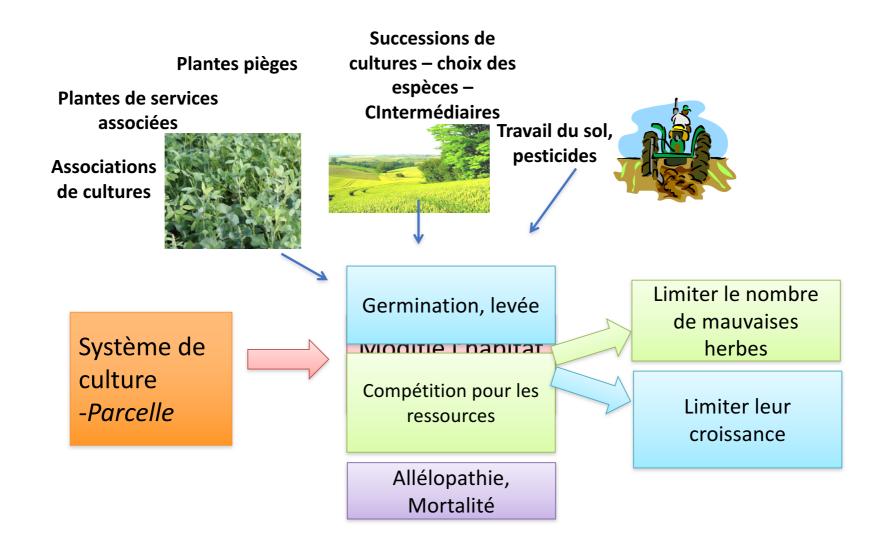
Tester de nouvelles manières de cultiver et objectiver le « réduire, si possible »

- Prévenir et guérir !
 - ✓ Reconcevoir ou substituer ?
 - ✓ Recourir à des processus biologiques naturels, c'est forcément repenser le système et trouver des compromis
- Les pesticides vraiment encore un gage de sécurité et de stabilité ?
 - ✓ Continuer à être rentable
 - ✓ S'adapter aux aléas climatiques
- C'est possible jusqu'où ?
- Conclusions

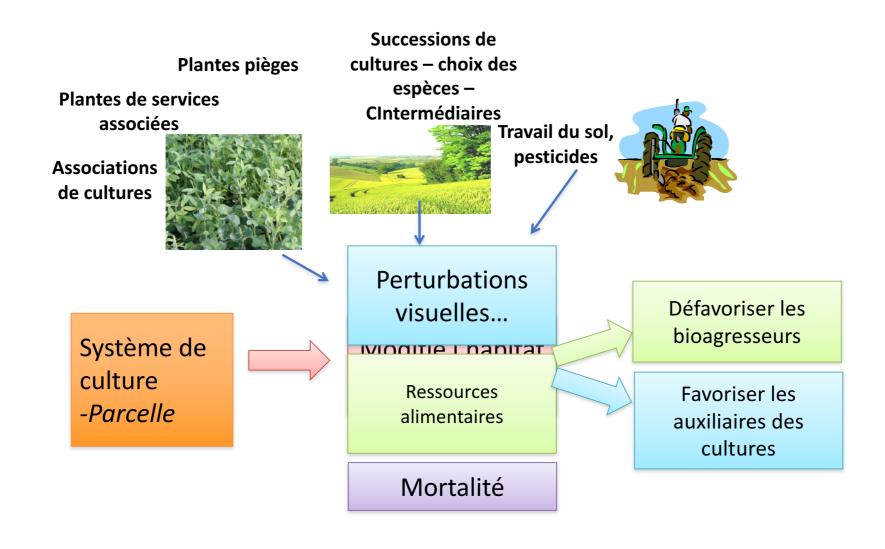
Prévenir et guérir!

SOUS-TITRE FACULTATIF

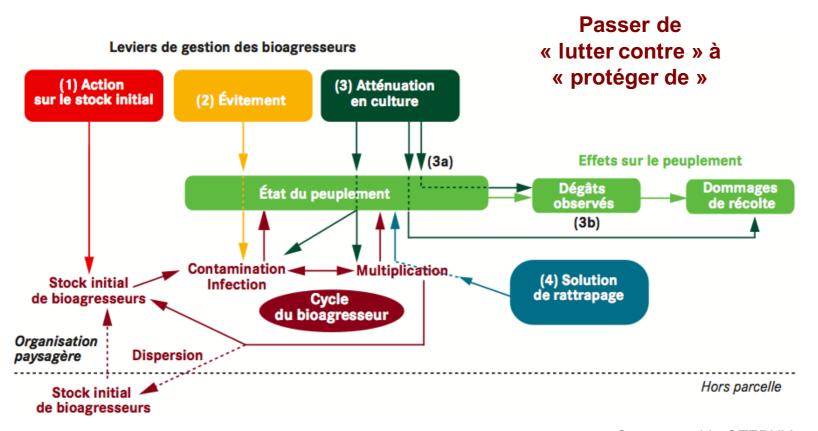
Réduire la dépendance, mais comment ?



The *continuum* (Cliff Ohmart, ENDURE Conference 2008)


- Compte tenu de la cohérence globale des systèmes de culture, des interactions fortes entre technique et états du milieu, changer de système signifie souvent RECONCEVOIR
- Les essais systèmes répondent ainsi à un besoin méthodologique et de connaissances sur :

Conception de nouveaux systèmes prenant en compte une vraie **rupture** par rapport à ceux actuellement en place


Le système de culture, levier d'expression des régulations biologiques

Le système de culture, levier d'expression des régulations biologiques

Réduire la dépendance, mais comment ?

Source : guide STEPHY

Penser stratégique pour "prévenir", tactique pour "guérir"

Objectifs -> Stratégies -> Leviers techniques

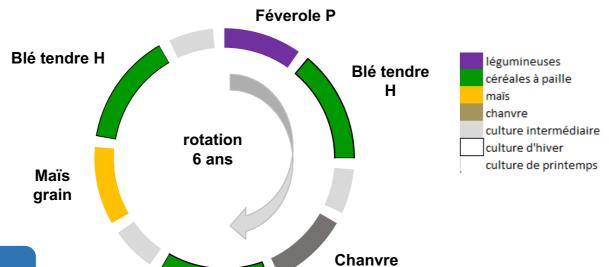
Produire sans utiliser de pesticides -> « Prévenir »-> Leviers techniques

Triticale

Stock initiale

Durée longue de la rotation Grande diversité *des espèces implantées

Eviter

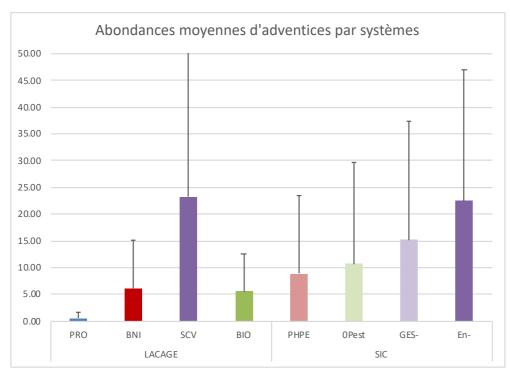

Mobiliser les dates de semis et densité de semis : semis tardif des céréales,

Interrang pour biner Et RDD pour intervention

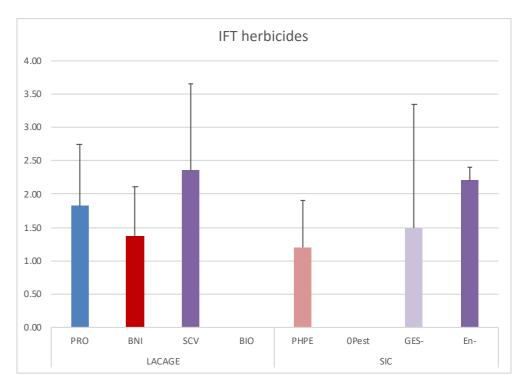
Rattraper

Exemple 0Pest sur SIC

combiner à la fois à l'échelle de la succession culturale et de chaque culture

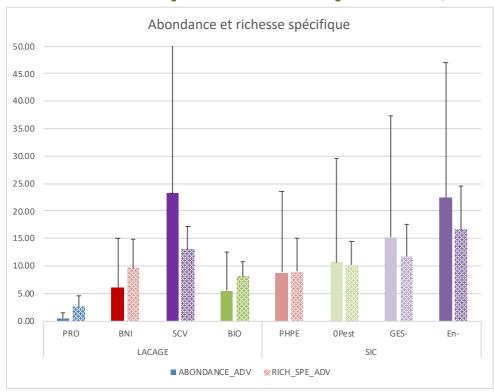

fibre

Variétés couvrantes Mélanges variétaux

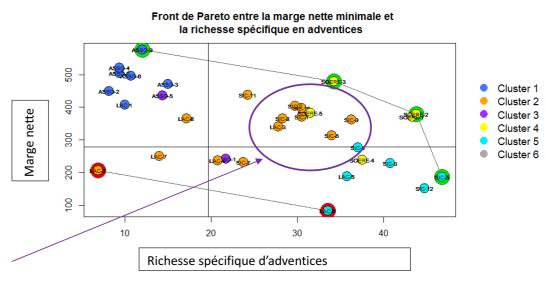

Limiter la compétition

Penser stratégique et tactique dans un système

Qu'en est-il des mauvaises herbes sur ces systèmes ?



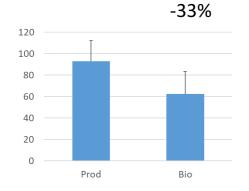
moyenne et écart-type sur 3*4 répétitions (2009-2015)


moyenne et écart-type sur 3 répétitions (2009-2015)

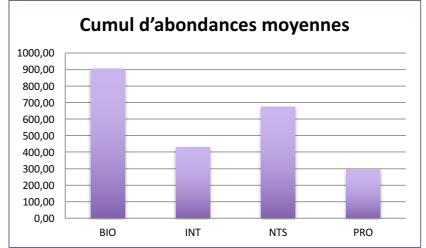
Repenser le système, c'est trouver des compromis

Compromis abondance de mauvaises herbes et richesse spécifique

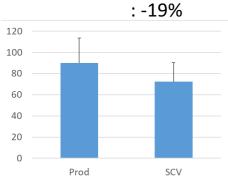
Mauvaises herbes

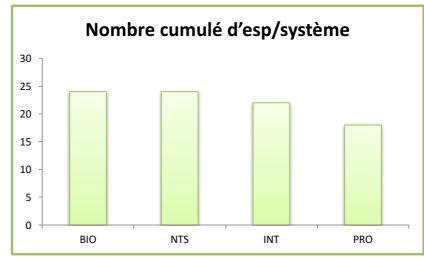

- ✓ Diversification des systèmes de culture et recours aux intrants sont à raisonner en cohérence
- ✓ On peut obtenir des compromis entre production de biens et services de régulation des adventices et maintien de la biodiversité

Stage Séverin Yvoz


Repenser le système, c'est trouver des compromis

Organismes auxiliaires


Rendement Blé Bio rotation L/L/B/B:



Rendement Blé SCV phase 3

Mesures 2015 - Travaux Peerless-Kamenova, non publié

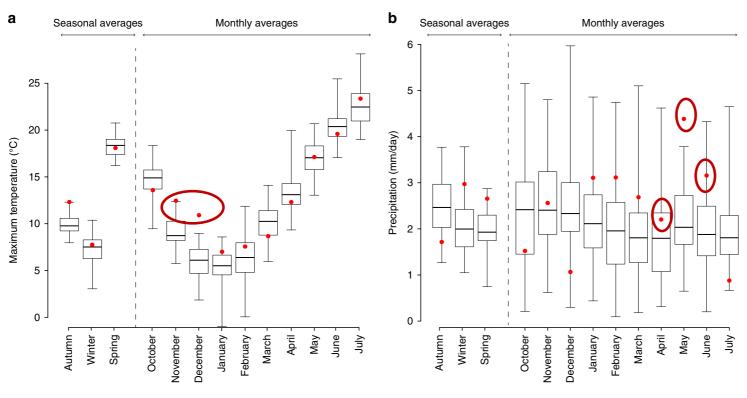
Les Pesticides, vraiment encore un gage de sécurité et de stabilité ?

SOUS-TITRE FACULTATIF

Des marges semi nettes équivalentes pour des

	0Pest	PV	PHPE
Marge semi-nette	858 +/-	917 +/-	811 +/- 178
(€/ha/an)	151	227	

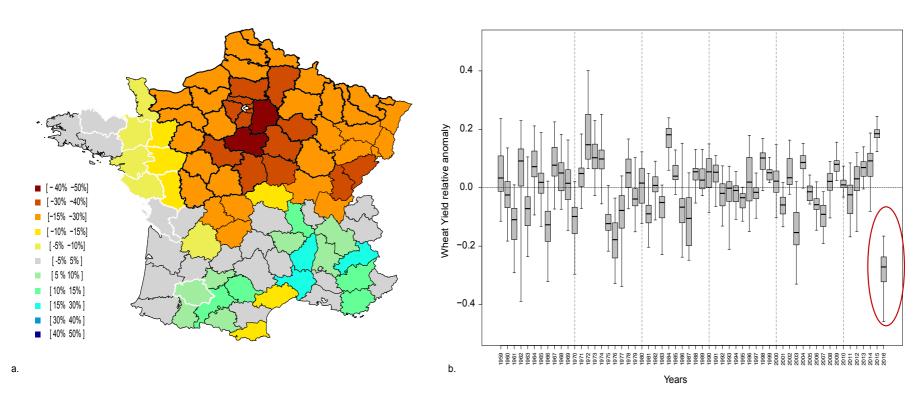
L'écart moyen de MSN s'élève à -58 +/- 85€/ha/an entre le sdci 0Pest (2009-2014) et les sdc PV


Performances économiques calculées selon divers scénarii de prix (Massot et al., 2016) (2009 – 2014)

Rendements moyen BLE (t/ha/an; ET; 15%) – période 2009-2018

système	Rendement	Ecart-type
BIO	6.1	1.0
BNI	8.3	2.0
Sans travail du sol	7.8	1.2
Productif	8.7	2.0

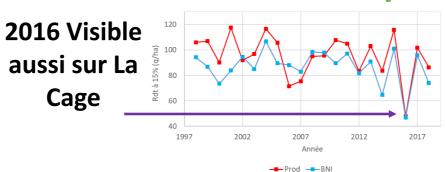
Peu ou pas de pertes économiques entre BNI, PHPE et productif Des rendements en cohérence avec les objectifs des systèmes


L'année 2016, si météorologiquement atypique

Automne, hiver chaud Printemps très humide, particulièrement en mai Pucerons à l'automne Maladies au printemps Fécondation perturbée

•••

Anomalies de rendement blé 2016 en France



Anomalies de rendement du blé en 2016 par rapport aux valeurs attendues définies dans chaque département par la tendance de rendement à long terme (1959-2016)

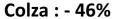
Boxplot de la distribution des anomalies dans la zone d'étude (1959-2016).

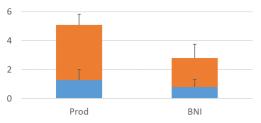
Et 2016 sur les essais systèmes

Rendement (q/ha)	2016	Moyenne 2010-2015	
PHPE	50	86	42% de baisse
0Pest	42	75	44% de baisse
IFT	2016	Moyenne 2010-2015	
PHPE	3.6	1.5	
0Pest	0	0	

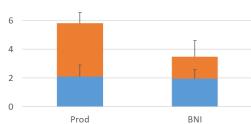
Des pertes de rendement pas plus catastrophiques sans les pesticides ; pas de protection des pesticides

Rendement (q/ha)	2016	Moyenne 2010-2015	
Productif	48	100	52% de baisse
Intégré	47	88	46% de baisse
Bio	33	67	50 % de baisse
IFT	2016	Moyenne 2010-2015	
Productif	6,3	6,0	
Intégré	3,1	4,0	
Bio	0	0	

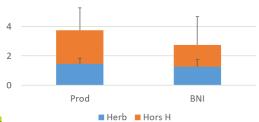



Réduire les pesticides, c'est possible jusqu'où?

SOUS-TITRE FACULTATIF


Réduction des insecticides, des fongicides, des herbicides

IFT- Système BNI

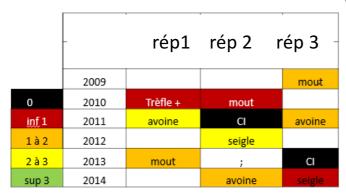


Pois: - 31% • Herb • Hors H

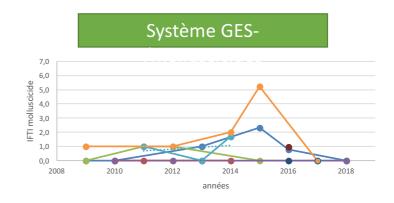
Indices de fréquence de traitements (IFT) ; Herbicide (H) ; Fongicide (F) ; Insecticide (I) ; Régulateur (R)

2009-2013/14	PHPE	0Pest	GES-	EN-
Performances environnementales et pratiques culturales (2009-2014) – Comparaisons				
aux systèmes PV				
Diversité	+33%	+66%	+100%	+66%
d'espèces implantées	+25%	+50%	+50%	+25%
Durée de la				
rotation (ans)				
IFT	-51%	-100%	-34%	-38%
IFTH	=	-100%	+24%	+83%

Réduction des IFT « facile » dans tous les postes et sur les systèmes sans contraintes de travail du sol


Réduction des herbicides et molluscicides plus délicate

 Réduction des IFT « plus difficiles » sur les postes herbicides quand on ne mobilise pas le travail du sol et la fertilisation pour favoriser la compétition


Des productions réduites de biomasse des cultures intermédiaires

Système GES-

Production de biomasses des cultures intermédiaires (t/ha/an)

Dépendance aux herbicides et molluscicides quand il n'y a plus de labour et que les cultures de rente ou intermédiaires sont peu couvrantes

- ➤ GES-: Glyphosate: sur colza, féverole et maïs souvent proche de IFT=1
- ➤ EN-: Glyphosate: Augmentation ces dernières années (IFT entre 0,2 et 1,4)

Mais cette dépendance n'est pas forte

Conclusions

SOUS-TITRE FACULTATIF

Des essais système pour...

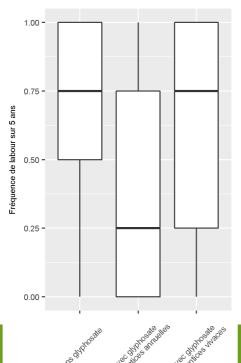
- Tester si et combien on peut réduire les produits phytosanitaires
- Evaluer sur **plusieurs critères** : pertes de production, pertes économiques, stabilité dans le temps, adaptation aux aléas climatiques... ou pas
- Concevoir pas à pas des systèmes en rupture
- Tester des solutions innovantes : mélanges d'espèces, de variétés, forte diversification des systèmes de cultures, outils de désherbage, de travail du sol...
- Repenser l'articulation avec le « biocontrôle »
- Evaluer les services écosystémiques rendus par d'autres manières de cultiver

Unité Expérimentale Grandes Cultures Versailles-Grignon

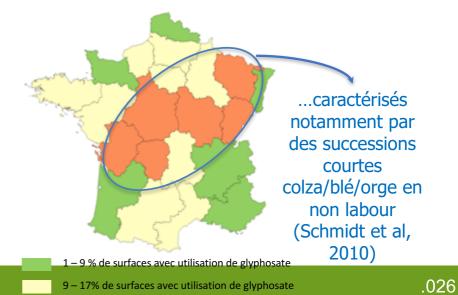
Merci de votre attention

Merci à Gilles Grandeau, Michel Bertrand, Caroline Colnenne-David, Séverin Yvoz pour la préparation de cet exposé

Le glyphosate en France et pratiques associées à son utilisation


BDD « pratiques culturales » grandes cultures du SSP (Min Agri) : 19282 parcelles enquêtées

 Le glyphosate ne se substitue pas aux autres herbicides mais est souvent ajouté



Etude collective Reboud et al., 2017; Ballot et al., en cours)

 Pour contrôler les adventices annuelles, le glyphosate est moins utilisé quand il y a un labour

 Le glyphosate est surtout utilisé sur des sols argilo-calcaires superficiels...

17 - 30% de surfaces avec utilisation de glyphosate

« 20 ans d'évaluation de Systèmes de Culture